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The stress-strain state of a sealing element in the form of a hollow cylinder is defined with
regard to viscous-elastic properties of its material. Based on linear laws of heredity, an
analytical formula allowing one to determine the axial load necessary for tightness of the
surface of the sealing element and the cylinder wall depending on its physic-mechanical
properties and geometrical dimensions is found. Influence of viscous-elastic properties of the
material of the sealing element on its sealing ability is realized based on the hypothesis of
elastic analogy. The results of numerical calculations are represented in the form of graphs of
the external force necessary for achieving sightless. It is shown that viscous-elastic properties
of the sealer material greatly influence its sealing ability. Because of heredity of the sealer
material, values of the external forces drop in some cases by about five times.
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1. Introduction

In the modern industry, machines and instruments require elastomeric materials like rubber for
the purposes of sealing, noise attenuation and shock absorption. The properties of rubber-like
elastomers are strongly influenced by the application of mechanical loading, deformation, applied
stress-strain rate, temperature, humidity and time. The main characteristic of their behavior is
the so-called viscoelastic response. This refers to a simultaneous elastic and viscous response
which is more pronounced during creep, relaxation and dynamic mechanical loading of these
materials. There is a lot of scientific work devoted to the investigation of behavior of various
rubber-like elements, such as sealing elements, O-rings, biodegradable polymers, shock-absorbing
elements and in exploitation processes (Dymnikov and Lavendelis, 2002; Gent, 2001; Gonca
and Švabs, 2011; Švabs and Gonca, 2012; Švabs, 2013). Elastomers present very complicated
mechanical behavior that exceeds the linear elastic theory and contain large deformations, plastic
and viscoelastic properties and stress softening (Chagnon et al., 2004; Näser et al., 2005).

It was shown that material compressibility causes additional stresses mostly associated with
an additional hydrostatic pressure, and adding a small volume change to classical rubber elas-
tic models can aid analytical and numerical simulations of polymer structures (Cassenti and
Staroselsky, 2017).
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Ali et al. (2010) reviewed the needs of different constitutive models for rubber like materials
undergoing large elastic deformation.

In some studies, the focus was given to the study of creep and stress relaxation behavior of
biodegradable polymers (Guedes et al., 2017; Martins et al., 2015; Singh et al., 2020).

A very important engineering problem is estimating the deformation and stresses in polymer
sealers. Sealing elements can be used in demanding seal applications over a broad pressure and
temperature range. They are easy to assemble and readily available, but require some attention to
prevent application problems. Cylindrical sealers are widely used as seal elements in engineering
practice in general, and in oil and gas industry in particular, and their deformation is very
important, especially due to the fact that seal breakage could lead to severe natural gas and oil
production accidents. Achieving tightness with the least external load by sealers and improving
their efficiency and determination of sealing parameters has an important scientific value. Some
scholars have done relevant research on cylindrical sealers used in oil and gas production (Lan
et al., 2019; Liu et al., 2020).

Liu et al. (2020) carried out theoretical calculation and experimental research through the
finite element analysis on the contact with large deformation according to the design of the new
seal structure. Lan et al. (2019) investigated the packer rubber with a conventional structure and
optimized the materials and the structure of the packer rubber by ABAQUS software simulation
and experimental research. But in these works viscoelastic properties of the sealing element were
not taken into account.

In consideration of the analysis results of the above scholars and experts, the influence of
viscoelastic properties of the cylindrical sealing element on its sealing ability is discussed in this
paper. As the experience of using sealing elements shows, the edge effects and heredity have a
significant influence on their sealing ability. Therefore, the study of sealing ability of cylindrical
sealing elements with regard to edge effects and heredity and the development, on this basis, of
effective measures to improve their efficiency has both a practical and scientific value.

In this paper, analytical formulas allowing one to determine the influence of viscous-elastic
behavior of the sealing element on its strain state are defined on the basis of linear laws of
heredity. We determine relaxation of the axial load necessary for tightness of the surface of
the sealing element and the cylinder wall, which is achieved by one-sided axial compression.
Accounting for heredity, the magnitude of the axial load for achieving tightness with regard to
differences of the strain state before and after contact of the inner surface of the sealing element
with the cylinder wall is defined.

2. Statement of the problem

Consider a sealing element tightly put on the stock and with a gap δ between its inner surface
and the cylinder wall (Fig. 1). The tightness of the surface of the sealing element and the cylinder
wall is achieved by one-sided axial compression (Fig. 1). Assume that the material of the sealing
element is homogeneous, then we accept its deformation as axially-symmetric.

We locate the origin of the coordinate system in the center of the lower section of the
sealing element, direct the coordinate axis z vertically-upwards, the axis r to the direction of
the increasing radius as shown in Fig. 1.

Accounting for viscous-elastic properties of the material of the sealing element on sealing
ability may be realized based on the hypothesis of elastic analogy (Abbasov et al., 2020; La-
vandelis, 1976; Papanicolaou and Zaoutsos, 2019; Rustamova and Darishova, 2020). By this
hypothesis, when passing from elastic calculation to viscous-elastic one, only the dependence
between the stresses and strains changes.
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Fig. 1. Design scheme

It should be noted that by the elastic analogy, all stress components satisfy the dependence
between stresses and strain obtained on the basis of the chosen model for a uniaxial stress-strain
state.

3. Solution of the problem

The dependence between the stress-strain components for an arbitrary case of loading in a model
that describes best the viscous-elastic behavior of the material of a sealing element is of the form
(Lavandelis, 1976)

τ̇ij + λ
∗τij = G[2(ε̇ij + ν

∗εij) + δij(ṡ+ ν
∗s)] (3.1)

where E1 = EM , λ
∗ = (E1 + E2)/η, ν

∗ = E2/η, η is dynamical viscosity of the material of
the sealing element, EM is the instantaneous modulus of elasticity, E2 is the elasticity modulus,
G is the shear modulus of the sealing element, τij are stress components, εij are relative strain
components, δij is Kronecker’s symbol, τ̇ij and ε̇ij is the time derivative of the stress and strain
components, s is dimensionless hydrostatic pressure s = (σx + σy + σz)/E.

Based on the elastic analogy, we represent (Abbasov et al., 2020; Lavandelis, 1976; Papani-
colaou and Zaoutsos, 2019; Rustamova and Darishova, 2020)

ε(x, t) = ε(x)ε(t) (3.2)

For a slightly compressible material (Lavandelis, 1976)

εii =
3

2

1− 2µ

1 + µ
s

from which it follows that the nature of these functions is such that they must fulfill the equality

s(t) = ε(t) (3.3)
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Substituting expression (3.2) into formula (3.1) and considering (3.3), we get

τ̇ij + λ
∗τij = G[2εij(x) + δijs(x)][ε̇ij(t) + ν

∗εij(t)] (3.4)

Integrating expression (3.4) with the initial condition τij(x, 0) = G[2εij(x) + δijs(x)], we get

τij = [2εij(x) + δijs(x)]G

(

e−λ
∗t +

t
∫

0

[ε̇ij(ξ) + ν
∗εij(ξ)]e

−λ∗(t−ξ) dξ

)

(3.5)

Accepting the elastic analogue idea, introducing the denotation

G = G

(

e−λ
∗t +

t
∫

0

[ε̇ij(ξ) + ν
∗εij(ξ)]e

−λ∗(t−ξ) dξ

)

(3.6)

we can represent expression (3.5) in the form looking like the Hooke law (Lavandelis, 1976)

τij = G[2εij(x) + δijs(x)] (3.7)

Therefore, in the given case, after finding the solution of the problem in the elastic statement,
using expressions (3.6) and (3.7) we can determine stress with regard to hereditary properties
of the sealer.

3.1. Elastic solution

Abbasov and Rustamova (2015) solved problem in the elastic statement using the methods
of elasticity (Amenzadeh, 1976; Lavandelis, 1976). The solution of the problem was performed
in two stages in the elastic statement. The first step was compression of the sealing element to
the first contact of its outside surface with the cylinder wall, the second state was to achieve
tightness.
Let us consider the first stage. Since the material of the sealing element is homogeneous, its

deformation is assumed to be axisymmetric. The hypothesis of flat sections can then be used,
assuming that the axial deformation of the sealing element depends only on the coordinate in
the axial direction.
We locate the origin of the coordinate system in the center of the lower section of the

sealing element, direct the coordinate axis z vertically-upwards, the axis r to the direction of
the increasing radius (Fig. 1).
Taking into account the above assumptions, the deformation of the sealing element in the

axial direction is taken in the form (Abbasov and Rustamova, 2015)

w1 = f1(z) (3.8)

where f1(z) is an unknown function, depending on z and to be determined.
Taking the material of the sealing element to be incompressible (Abbasov and Rustamova,

2015; Amenzadeh, 1976; Gent, 2001; Lavandelis, 1976), we have the equality

1

r

∂(u1r)

∂r
+
∂w1
∂z
= 0 (3.9)

where u1(r, z) is the deformation of the sealing element in the radial direction.

The boundary condition is

u1(r, z)
∣

∣

∣

r=R2
= 0 (3.10)
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Then, from expression (3.9), taking into account the boundary condition (3.10), we obtain

u1(r, z) =
1

2

(R22
r
− r

)

f ′1(z) (3.11)

For the potential energy of the sealing element after its deformation, taking into account the
axisymmetry and linearity, we have the equality (Abbasov and Rustamova, 2015; Lavandelis,
1976)

Π = 4πG

H
∫

0

R2
∫

R1

(

ε2r + ε
2
θ + ε

2
z +
1

2
γ2rz

)

r dr dz −

H
∫

0

Qf ′1(z) dz (3.12)

where H is height, R1, R2 are inner and outer radii of the sealer, µ is the friction coefficient
between the washer and the end of the sealer, εr, εθ, εz and γrz are respectively, radial, tangential,
axial and shear deformations (Amenzadeh, 1976; Lavandelis, 1976).

The boundary conditions are

µQ
∣

∣

∣

z=H
= 2πG

R2
∫

R1

γzrr dr w1
∣

∣

∣

z=0
= 0 u1(r, z)

∣

∣

∣

z=0
r=R1

= −δ (3.13)

The radial stress at any point of the sealing element can be determined by the formula
(Abbasov and Rustamova, 2015; Lavandelis, 1976)

σr = G(2εr + s) (3.14)

with the boundary condition

σr
∣

∣

∣

r=R(z)
= 0 (3.15)

where R(z) = R1 + u1(r, z)
∣

∣

r=R1
.

Then, from condition (3.15), taking into account expressions (3.11) and (3.14), we obtain

s =
( R22
R2(z)

+ 1
)

f ′1(z) (3.16)

The axial load Q for compressing the seal is determined by the formula

π(R22 −R
2
1)σz

∣

∣

∣

z=H
= Q (3.17)

On the other hand, we have the equality

σz = G(2εz + s) (3.18)

From expression (3.17), taking into account expressions (3.11), (3.13)-(3.16) and (3.18), for the
axial load Q for compression of the sealing element to the first contact of its inner surface with
the cylinder wall we obtain (Abbasov and Rustamova, 2015)

Q = πG(R22 −R
2
1)q (3.19)
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where

q =
3

√

√

√

√

−

1

2

(2a3

27
−

ab

3
+ c
)

+

√

1

4

(2a3

27
−

ab

3
+ c
)2
+
(

−

a2

9
+
b

3

)3

+
3

√

√

√

√

−

1

2

(2a3

27
−

ab

3
+ c
)

−

√

1

4

(2a3

27
−

ab

3
+ c
)2
+
(

−

a2

9
+
b

3

)3
−

a

3

a =
1

λC(3C − 1)

[

−

3δC

cosh(kH)
+ 2(3C − 1)

(

R1 −
δ

cosh(kH)

)]

b =
1

λ2C2(3C − 1)

[

R22C + (3C − 1)
(

R1 −
δ

cosh(kH)

)2
−

6δC

cosh(kH)

(

R1 −
δ

cosh(kH)

)]

c =
−R22 − 3

(

R1 −
δ

cosh(kH)

)2

λ3C2(3C − 1) cosh(kH)
δ

C =
µ(R22 −R

2
1) sinh(kH)

Bk cosh(kH)
−

(R22 −R
2
1)[1− cosh(kH)]

4
(

R22 −
3
2R
2
1 +

1
2
R42
R21

)

cosh(kH)

k =

√

√

√

√

√

R22 −
3
2R
2
1 +

1
2
R42
R21

−

3
64R

4
2 −

1
64R
4
1 +

1
16R
2
2R
2
1 +

1
16R
4
2 ln

R2
R1

B =
R32
3
−

1

2
R22R1 +

R31
6

λ =
1

2

(R22
R1
−R1

)

A =
q(R22 −R

2
1)

4
(

−

3
64R
4
2 −

1
64R

4
1 +

1
16R

2
2R
2
1 +

1
16R

4
2 ln

R2
R1

)

Let us also determine the value of the axial load required for full contact of the inner surface
of the sealing element with the cylinder wall. The origin of the coordinate system is placed in
the center of the lower section of the sealing element and the z axis is directed vertically upward,
and the r axis is directed in the direction of the increasing radius.
Using the hypothesis of flat sections and, accordingly, assuming that the axial deformation

of the sealing element depends only on the coordinate in the axial direction z, we can take

w2 = f2(z) (3.20)

where w2 is the axial deformation of the sections of the sealing element, f2(z) is an unknown
function depending only on z.

The boundary condition is

u2(r, z)
∣

∣

∣

r=R2
= 0 (3.21)

Similarly to the first stage, from the incompressibility condition, we obtain

u2 =
1

2

(R22
r
− r

)

f ′2(z) (3.22)

For potential energy of the sealing element after its deformation, taking into account the ax-
isymmetry of the problem, we have the equality (Abbasov and Rustamova, 2015; Lavandelis,
1976)

Π = 4πG

h
∫

0

R2
∫

R0

(

ε2r + ε
2
θ + ε

2
z +
1

2
γ2rz

)

r dr dz −

h
∫

0

Pf ′2(z) dz (3.23)
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where h is height of the sealer after deformation of the sealing element to the first contact of its
inner surface with the cylinder wall, R0 is radius of the cylinder being sealed.

The boundary conditions are

µP
∣

∣

∣

z=h
= 2πG

R2
∫

R0

γzrr dr u2(r, z)
∣

∣

∣

r=R(h)
z=h

= −δ(h) w2
∣

∣

∣

z=0
= 0 (3.24)

where

R(h) = R1 + u1(r, z)
∣

∣

∣

r=R1
z=h

δ(h) = δ + u1(r, z)
∣

∣

∣

r=R1
z=h

The axial force required to deform the sealing element until its outer surface is in full contact
with the cylinder wall is determined by the formula

π(R22 −R
2
0)σz

∣

∣

∣

z=h
= P (3.25)

where σz is the axial stress in any cross-section of the sealing element.
After full contact of the outer surface of the sealing element with the cylinder wall, the

boundary condition on the upper section has the form

σr
∣

∣

∣

r=R0
z=h

= 0 (3.26)

Then, from expression (3.14), taking into account boundary condition (3.26), we obtain

s =
(R22
R20
+ 1

)

f ′2(h) (3.27)

From expression (3.25), for the axial load P necessary for complete contact of the inner surface
of the sealing element with the cylinder wall we have (Abbasov and Rustamova, 2015)

P = 2πG(R22 −R
2
0)
R(h)δ(h)

R22 −R
2(h)

( R22
(R20
+ 3

)

(3.28)

where

R(h) = R1 + λ
(

c2 sinh(kh) + c3 cosh(kh) +
A

k2

)

δ(h) = δ + λ
(

c2 sinh(kh) + c3 cosh(kh) +
A

k2

)

c2 =
µQ

πGBk cosh(kH)
+
( δ

λ
+
A

k2

)

tanh(kH) c3 = −
δ

λ
−

A

k2

c4 = −
µq(R22 −R

2
1)

Bk2 cosh(kH)
−

( δ

λk
+
A

k3

)

tanh(kH)

h = H −
∣

∣

∣

c2
k
cosh(kH) +

c3
k
sinh(kH) +

A

k2
H + c4

∣

∣

∣

The contact pressure between the inner surface of the sealing element and the cylinder wall
after their full contact can be determined (by analogy to the beam on an elastic foundation),
according to the formula

σr(z) = k0u0(z) (3.29)
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where k0 is the bed ratio

u0(z) = R1 −R0 + u1(r, z)
∣

∣

∣

r=R1

We now consider the case when the sealing element deforms uniformly. Based on the elastic
analogy (Lavandelis, 1976; Papanicolaou and Zaoutsos, 2019), we accept the deformation of
cross sections of the sealer in the form (Fig. 2)

ε1(z, t) = ε1(z)ε1(t) (3.30)

Fig. 2. Graph of the time dependence of the relative axial deformation of the upper section

Now consider how the stress σz(Q) at the end surfaces will change over time (relaxation) if
the sealing element is deformed at a steady rate until a fixed time T1 and then it stays stable

ε1(t) =
t

T1
[H(t)−H(t− T1)] +H(t− T1) (3.31)

whereH(t) is the Heaviside function, T1 is time of deformation of the upper section of the sealing
element to its first contact of the inner surface with the cylinder wall.
Substituting expression (3.31) into formula (3.6) and then integrating it, we obtain the

equality

G(t, T1) = G
{

e−λ
∗t +

[(

(ν∗ − λ∗)
(

1− e−λ
∗(t−T1)

)

− ν∗λ∗(t− T1)
)

H(t− T1)

−

(

(ν∗ − λ∗)
(

1− e−λ
∗t
)

− ν∗λ∗t
)

H(t)
]}

(3.32)

Then, allowing for formula (3.32) following from expression (3.19), we get

Q = πG(t, T1)(R
2
2 −R

2
1)q (3.33)

Expression (3.33) formulates the magnitude of the axial load necessary for recompressing the
sealing element to its first contact of its inner surface with the cylinder wall.
Substituting formulas (3.32) into expression (3.28) for the axial load necessary for full contact

of the inner surface of the sealing element with the cylinder wall with regard to heredity, we get

P = 2πG(t, T2)(R
2
2 −R

2
0)
R(h)δ(h)

R22 −R
2(h)

( R22
(R20
+ 3

)

(3.34)

where T2 is time of deformation of the upper section of the sealing element to its full contact of
the inner surface with the cylinder wall.
The axial load for compressing the sealing element until its inner surface is in full contact

with the cylinder wall in the first approximation is the sum of the axial loads of the first and
second stages

P ∗ = Q+ P (3.35)
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4. Numerical calculation

Thus, based on theoretical investigations, the analytical formulas allowing one to determine the
axial loads necessary for the first and full contact of the inner surface of the sealing element with
the cylinder wall depending on its physic-mechanical properties and geometrical dimensions are
found.

Fig. 3. The graph relaxation of axial stress of the upper section of the sealer to the first contact of its
inner surface with the cylinder wall; 1 – T1 = 10 s, 2 – T1 = 20 s, 3 – T1 = 30 s, 4 – T1 = 40 s,

5 – T1 = 50 s, 6 – T1 = 60 s

Fig. 4. The graph of relaxation of the axial stress of the upper section of the sealer after full contact of
its inner surface with the cylinder wall; 1 – T2 = 20 s, 2 – T2 = 30 s, 3 – T2 = 40 s, 4 – T2 = 50 s,

5 – T2 = 60 s
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The numerical calculation is made by formulas (3.33) and (3.34) for the values of parameters
which are shown in Table 1. The results of numerical calculations are represented in the form of
graphs of external forces necessary for achieving sightless (Figs. 3 and 4).

The time dependence of the axial load Q for compression of the sealing element to the first
contact of its inner surface with the cylinder wall is depicted in Fig. 3. And Fig. 4 shows the
time dependence of the axial load P necessary for complete contact of the inner surface of the
sealing element with the cylinder wall.

The same picture is observed when deformation of the sealer happens uniformly. As seen
in Figs. 3 and 4, for a constant value of axial deformation in the section of application of the
external force with regard to heredity, the stress greatly relaxes. This time, the axial stress
relaxation for different velocities of deformation occurs differently (Figs. 3 and 4). As can be
seen in the figures, the value of external forces decreases and stabilizes after a while. Because
of heredity of the sealer material, the values of external forces in some cases drop by about five
times.

It is shown that viscous-elastic properties of the sealer material greatly influence its sealing
ability.

Table 1. The values of parameters

Variable Value

R0 – radius of cylinder being sealed [m] 0.073

R1 – inner radius of sealer [m] 0.076

R2 – outer radius of sealer [m] 0.1

δ – size of gap of abutting inner surface to
0.003

wall of cylinder being sealed [m]

H – height of sealer [m] 0.02

G – shear modulus of sealing material [Pa] 1.3 · 108

µ – friction coefficient between washer and end of sealer [–] 0.5

ν – Poisson’s ratio [–] 0.25

ν∗ = E2/η [–] 0.01

λ∗ = (E1 + E2)/η [–] 0.1

T1 – time of deformation of upper section of sealing
10, 15, 20, 25, 30, 35element to its first contact of inner surface with

cylinder wall [s]

T2 – time of deformation of upper section of sealing
15, 20, 25, 30, 35element to its complete contact of inner surface with

cylinder wall [s]

5. Conclusion

Thus, it is shown that viscoelastic properties of the sealing material greatly influence its sealing
ability and their ignorance may lead to incorrect conclusions. Based on the hypothesis of elastic
analogy, an expression is obtained allowing one to determine the stress-strain state of the sealing
element in the form of a hollow cylinder with regard to viscous-elastic properties of its material.
Relaxation of the axial load necessary for the first and full contact of the inner surface of the
sealing element with the cylinder wall is determined. The results of numerical calculations are
represented in the form of graphs of the external force necessary for achieving sightless.
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